Hero image

516Uploads

198k+Views

106k+Downloads

Build a bunny craft activity
IETEducationIETEducation

Build a bunny craft activity

(0)
Making structures from card strips and assembling these into animal forms In this fun Easter themed STEM activity for kids, students will learn about 3D structures within a graphical project. Learners will build a bunny using card strips from a template. This free resource, aimed at primary school children, could be used as a main lesson activity, to teach learners about simple structures made from separate parts. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, to make a bunny. The teacher will first print the free activity sheet, which can be found below, onto thin card and distribute to the learners. Learners can then follow this step-by-step guide to build their own DIY Easter bunny. If time allows learners could decorate their Easter bunnies. They will then share their completed bunnies with the class. This activity will take approximately 50 – 80 minutes. Tools/resources required Build a bunny handout Scissors Glue Colouring pencils/pens (optional to colour in your bunny before assembly) The engineering context Engineers use nets and card to allow them to make scaled 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny structure from card strips. Download the free Build a bunny activity sheet below! Also includes a bonus worksearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
CAD design project
IETEducationIETEducation

CAD design project

(0)
Producing a CAD drawing of a design idea This activity involves using CAD to design a modular product that could be made in batches using the casting process. Students will be tasked with creating a mould that could be used to make this product. The aim of this activity is to design a shape that can be tessellated, have a practical application, and would look aesthetically pleasing as a modular set of products that can lock together. This project is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. This activity should be followed by Investigating batch production . Also included in the series are Engineering design processes and Investigating cast products. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T). Activity: Producing a CAD drawing of a design idea In this activity students will design a modular product that could be made in batches using the casting process and create a mould that could be used to make this product. Students will be asked to design a set of identical products that interlock (are modular). The products must be suitable for batch production made by casting and be made from PoP (plaster of Paris). They’ll need to produce sketches of some design ideas and then choose one for modelling using CAD software. Students will next create a card model to test the interlocking feature and aesthetics of their design. After this they can make any necessary adjustments to their CAD drawing, and use use CAD/CAM to create an MDF mould. The engineering context Engineers will use CAD design as part of the process of making products. Items that have been designed this way are also ideal for batch production as they can be easily replicated. This links to industrial practices such as quality control, standardisation, and casting manufacture. Suggested learning outcomes This activity will teach students to analyse a design brief as well as generate ideas for a tessellated product that is suitable for batch manufacture. Students will also learn how to produce a CAD drawing of a design idea. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Make a sensor to test a waterlogged sports pitch
IETEducationIETEducation

Make a sensor to test a waterlogged sports pitch

(0)
Making a moisture sensor to check that a sports pitch is fit to play on In this engineering activity, designed for secondary school students, students will make and test a moisture sensor that referees can use to check the playability of a football pitch. This is one of a series of resources designed to allow learners to use the theme of the sport to develop their knowledge and skills in design and technology and engineering. This free resource focuses on making and testing a moisture sensor that referees can use to check the playability of the pitch. Activity introduction Your task is to make a waterlogging sensor that a referee can use to check whether the playing field is fit to play on. It should indicate when the pitch is too wet for play to safely take place. Follow the steps outlined in our free activity sheet to assemble your own moisture sensor circuit. Once the sensor is assembled place the moisture sensor in wet soil or grass to see if it works! After you have tested your moisture sensor circuit you can discuss with your teacher how successful the making of it has been. This activity will take approximately 50-80 minutes. What you will need A soldering iron, stand, sponge and mat/base Solder Moisture sensor circuit board A 9-volt battery and battery snap A 470-ohm, 1 kiloohm and 1.2 kiloohm resistor A transistor A 5 mm red LED A sticky pad The engineering context Sporting events require engineers of a wide range of disciplines to make sure that it runs smoothly and effectively. From structural engineers in charge of stadium design to textile engineers producing the players’ kits, the importance of engineers is huge. Electrical and electronic engineers need to have basic skills in circuit construction, including soldering components and testing electronic PCBs. Suggested learning outcomes By the end of this activity students will be able to make a moisture sensor circuit, they will be able to fit and solder components to a PCB and they will be able to test the moisture sensor circuit to check how well it works. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Aerodynamics timeline
IETEducationIETEducation

Aerodynamics timeline

(0)
In this lesson, students will learn about the development of aerodynamics through history. It’s an engaging starter activity where students will be introduced to the concepts behind aerodynamic design, including how simple shapes can be tested in a wind tunnel and through water. Learners will explore the basic principles of aerodynamics by looking at familiar products (such as cars) that have been designed for speed. As part of the lesson, students will examine how these products have evolved and how aerodynamic principles have influenced these developments. They’ll be asked to identify common features across different products and understand how these features all contribute to speed. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science or design and technology (DT). Activity: Learning about the history of aerodynamics This activity will ask students to research images of a selection of cars and aeroplanes from the 20th and 21st centuries (without looking at exactly when they were made). Students will then try to arrange these images in chronological order and explain their decision-making process based on the aerodynamics of each vehicle. Download our activity overview for a detailed lesson plan for teaching students about the history of aerodynamics. The engineering context From making the fastest Formula One car, to designing more fuel-efficient aeroplanes, aerodynamics is a fundamental skill for mechanical engineers. By exploring the evolution of cars and airplanes, students will develop an appreciation for how advancements in aerodynamics technology have shaped the look and design of many cars and aeroplanes over the years. Suggested learning outcomes Students will be able to identify trends in the development of aeroplanes and cars. They will gain an understanding of what influenced these developments and be able to explain the role of aerodynamics as part of this. Download our classroom lesson plan and presentation for free. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Making a vehicle for an egg race
IETEducationIETEducation

Making a vehicle for an egg race

(0)
Designing and making a vehicle to transport an egg in a race In this Easter STEM activity students will design and make a car that can safely carry an egg in a racing event and compete against other designs. This challenge is aimed at secondary school students and could be used as a main lesson activity to teach learners about modelling and prototyping, or as part of a wider scheme of learning covering manufacturing processes and techniques. It could also be used as part of an introduction to aerodynamics. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology, Engineering and Mathematics. This resource focuses on designing and making a vehicle to transport an egg in a racing event. Download our free activity sheet to see an example of how an egg racer could be made. This could be made to assist the development of workable ideas. This could be used to guide lower ability learners or for learners who produce a design idea that would otherwise not be practical to make. The final vehicles need to be placed on a slight slope for the race. For example, this could be a natural slope, or a plank or board rested on the table. As an alternative to a direct race, the evaluation could be based on the time taken to go down the ramp (which could allow the integration of maths, for example to calculate the average velocity) or determining which vehicle continues furthest along the floor after coming down the ramp. Tools/resources required Card Straws Wooden dowels or skewers with sharp points removed Wheels (wood or card) or plastic bottle tops Card tubes Masking tape Glue Glue guns if available Scissors Rules or rulers for measuring The engineering context Engineers make models and prototypes to test ideas and see how they will work. For example, they will put a model of a car in a wind tunnel to see how aerodynamic the design is. This helps to make designs that use the minimum amount of fuel. Suggested learning outcomes By the end of this fun school project students will be able to design and make a vehicle to transport an egg in a race and they will have an understanding of what is mean by ‘aerodynamics’. Download the free Make a Vehicle for an Egg Race activity sheets, including a bonus crossword using the words from the activity to enhance learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make an amazing bunny pop up card
IETEducationIETEducation

Make an amazing bunny pop up card

(0)
Learn about 3D structures and make a bunny pop up card in this fun Easter STEM activity for kids In this fun STEM activity for kids, students will learn about graphic products and use templates to help them cut out the parts for a homemade Easter card. This activity is aimed at primary school children and could be used as a main lesson activity, to teach learners about the use of templates. This is one of a set of resources designed to allow students to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making a graphics project, in this case an Easter pop-up bunny card. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to make their own homemade Easter bunny pop-up card. Once learners have completed each step for themselves, the teacher can explain why templates are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed Easter pop-up cards with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card (various colours) Scissors Coloured paper The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to make and assemble an Easter pop-up card from separate parts. Download the free Make an amazing Easter pop up card activity sheet. Also included is a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a Royal carriage
IETEducationIETEducation

Design a Royal carriage

(0)
Designing a new Royal carriage that is electrically powered Royal carriages have long been a part of history and tradition in the United Kingdom. Famous for the horses that draw them as well as their luxury velvet interiors and the fairytale that surrounds them. The carriages must be comfortable for travel as well as regal. They must accommodate the needs of the Royal family to be used for formal events as well as wedding transport. King Charles III is known for his commitment to environmental issues and passion for a greener world so could the new carriage be electrically powered? This is one of a series of resources that are designed to allow learners to use the theme of King Charles III’s coronation to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing an electrically powered Royal carriage for the event. The teacher will first introduce the design brief and explain that the carriage must be electrically powered, show the King’s Cypher, reflect the history and traditions of the Royal family, include features to aid comfort and make use of modern, lightweight materials. Learners will then take time to design their carriage and (if possible) teachers can show how an electric motor can be powered using batteries and then charged using a solar panel. Use the handout for learners to sketch their ideas for the new Royal carriage making sure to annotate their design to show how it meets the design criteria. As an extension students could design a mechanical system to covert the rotary motion from the motor to the movement of the carriage and/or produce a functional scale model of their proposed design and test how well it works. Tools/resources required Pens, pencils and coloured pencils A4 or A3 paper 3 V motors Rechargeable AA batteries AA battery packs Red and black wires/crocodile clips AA solar battery charger The engineering context Engineers have a moral and ethical responsibility to ensure that their designs are sustainable and do not negatively impact on the environment. This includes using renewable energy wherever possible to power systems and devices. Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit assembly, including following wiring diagrams. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation.
Create a stone garden display
IETEducationIETEducation

Create a stone garden display

(0)
Create a stone garden display for the school entrance to celebrate the coronation of King Charles III In this activity learners will make use of the theme of the King’s coronation to design a rock garden in the style of a flag or other item to commemorate the event. They will consider the design brief for the criteria, use a template to produce a design on paper, consider the scale for the final display and produce the final display. The teacher will first explain what a commemorative stone garden or display is with suitable examples which learners will discuss to state what is good about each example and what could be done better. Learners will then discuss which images should be used, for example, a Union Jack flag or a crown. The teacher will then lead the learner through the stages of design, scaling up, making and installing their stone garden where the class will come together to assemble their display in the designated area at school. This activity can be simplified (particularly for less able students) by supplying regular sized pebbles and cutting out the paper rocks to be the same size as these pebbles, then missing out the maths scaling part of the activity. To help, learners could also be provided with images for inspiration, e.g. flags, crowns, school entrance locations, etc. Use the handout for learners to cut out the 2D paper stones, sketch their design ideas onto them and assemble their stones into their garden design. As an extension students could create a border around their display incorporating flowers and plants and/or design a new flag to represent the whole of the United Kingdom. Tools/resources required Coloured paper – red, blue and white Scissors Glue sticks Alternative: coloured pencils or paints Paint (water based acrylic paint) Brushes and water to clean them Gloves and overalls Stones and small cobbles Paint suitable for outside use The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Using natural materials is becoming more common in the built environment. It is important for engineers to have a working knowledge of different natural materials and their potential applications. Suggested learning outcomes By the end of this free resource students will be able to design and produce an attractive stone display to celebrate the King’s coronation; produce designs that meet a given brief; and be able to use measurements and scaling when designing. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Exploded views
IETEducationIETEducation

Exploded views

(0)
How to draw an exploded view This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on drawing exploded views of products. Different types of drawing are used to communicate different types of information. Exploded views show how the component parts of a product relate to each other. These are widely used to support the assembly of products, for maintenance activities and when building flat pack furniture at home. Producing an exploded view develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context. In this activity learners will produce an exploded view drawing of a pen, working in proportion and ideally to scale. This could be used as a one-off activity, an extension to maths learning on scale, or linked to D&T activities such as product analysis or section drawing. It could also be used in conjunction with the IET primary poster – Exploded Views. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Build an Easter bunny basket
IETEducationIETEducation

Build an Easter bunny basket

(0)
Making structures from card and assembling these into baskets In this hands-on STEM activity for kids, students will learn about 3D structures within a graphics projects. The project will involve using templates to help them cut out the parts for an Easter bunny basket. This fun exercise is aimed at primary school children and could be used as a main lesson activity, to teach learners about simple structures made from separate parts. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building an Easter bunny-shaped basket. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to build their own DIY Easter bunny basket. Once learners have completed each step for themselves, the teacher can explain how nets are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed bunny baskets with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card Scissors Cotton wool (for the bunny tails) The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny basket structure from card parts. Download the free Build an Easter Bunny Basket activity sheet below! Also includes a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a DIY Easter Bunny
IETEducationIETEducation

Make a DIY Easter Bunny

(0)
Making an Easter bunny puppet with moving arms and legs In this activity students will learn about simple mechanisms using linkages made from paper products. Learners will have an opportunity to use a template to help them cut out the parts for a cardboard Easter bouncing bunny. This fun STEM challenge aimed at primary school children could be used as a main lesson activity, to teach learners about linkages. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, which uses linkages to make the limbs of a bunny move. Follow this step-by-step guide to make your own Easter bouncing bunny. Learners will complete each step for themselves. Once everyone has made their bouncing bunny, the teacher will discuss the results of the activity with learners. The teacher will also explain how linkages are used to make objects move. Download the free activity sheet for more detailed instructions, teachers notes and for optional extension work. Also includes a fun bonus activity to enhance sticky learning. This exercise will take approximately 50 – 80 minutes. Tools/resources required Glue sticks Card or cardboard Scissors String Brass fasteners Pencils Erasers/sticky tack Elastic bands The engineering context Engineers must have a good understanding of mechanisms. Mechanisms are used in every machine that has moving parts, from trains, cars, and washing machines to a space rocket. Suggested learning outcomes By the end of this activity students should be able to understand how to use a linkage to create movement and they will be able to make and assemble a bouncing bunny with moving arms and legs. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
How to make flowcharts for programming
IETEducationIETEducation

How to make flowcharts for programming

(0)
Write a flowchart program to meet a given design brief Programming is an essential skill in the 21st century world. From mobile phones and tablet computers, to large ‘fly by wire’ passenger jet aircraft, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family. The work of programmers is all around us. Almost all modern electronic systems and products have been programmed to perform different tasks. Learning how to program has therefore become an essential skill for both product and systems designers. Activity info, teachers’ notes and curriculum links An engaging activity which enables students to understand and be able to create flowcharts. This is one of the two main methods of programming (the other being raw code/programming language). The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section below. And please do share your classroom learning highlights with us @IETeducation
Reading maps and scale drawings
IETEducationIETEducation

Reading maps and scale drawings

(0)
Work out how to reach destinations using a scale map In our daily life we take 21st-century technology for granted. Some could argue that we aren’t developing basic skills, as technology often does the work for us. When the technology fails, however, the absence of some necessary skills could create difficult situations. Can your students use our worksheet and presentation to work out how to reach a destination from a scale map? This activity is an engaging investigation into the uses of communications technology in the modern world. There is an opportunity to audit the students’ skills such as visualisation or map-reading to form a scale drawing. These are skills that may not have been developed due to the use of various electronic devices. As a visualisation activity, distribute the Lost Now presentation as a handout or display it using a data projector. This is an activity where the process of thinking about what the map might show is more important than the actual outcome of the sketch they would produce. The handout has text handouts that can be printed and given to the students. There is also a map using Ordnance Survey symbols that might be better displayed on a screen using a data projector. Students should complete the three activities outlined in the presentation either in groups or as individuals. Tools/resources required Ruler (a transparent ruler showing millimetres is best) Calculators Students will need Ordnance Survey symbols from the website below (either print sheets of the symbols or display them on a screen to save on copying). The engineering context Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Suggested learning outcomes By the end of this activity students will be able to make informed decisions about technology for social, economic and environmental reasons, they will be able to use scale drawing and they will have an understanding of how waves are used to carry a communications signal. Download the free Reading maps and scale drawings activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Working drawings poster
IETEducationIETEducation

Working drawings poster

(0)
Secondary classroom poster where students can find out more about working drawings and how they are created. Download the single poster here or order a full set of posters for free from the IET Education website.
3D Printing poster
IETEducationIETEducation

3D Printing poster

(0)
Secondary classroom poster looking at the 3D printing process and how it can be used to make everyday objects. Download here or order a full set for free from the IET Education website.
Make a papier mâché Easter egg
IETEducationIETEducation

Make a papier mâché Easter egg

(0)
Learn how to make papier mâché Easter eggs with balloons in this fun STEM activity for kids In this fun Easter STEM activity for kids, students will learn how to use papier mâché and a balloon to make and decorate an Easter egg that they can use as part of their celebrations. This activity is aimed at primary school students and could be used as a main lesson activity to teach learners about making techniques, design creativity and the use of colour, or part of a wider scheme of learning covering graphics-based techniques. There are also potential curriculum links with the Art department and STEAM based activities. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making and decorating a papier mâché Easter egg with different coloured paints. Follow this step-by-step guide to make your very own papier mâché Easter egg. Download our free activity sheet for more detailed instructions, teachers notes and optional extension work. Also included is a fun bonus maze activity. Tools/resources required A balloon Newspaper and white paper Wallpaper paste (flour and water or PVA glue can be used instead) A small plastic pot Scissors Different coloured paints and other materials for decorating, such as foam letters and card borders Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to use papier mâché and a balloon to make an Easter egg model. They will also be able to use colour to decorate a papier mâché based egg and they will be able to show creativity when designing and making products. The engineering context Engineers make product models to test ideas and see how they will work. Papier mâché can be used to make 3D models. Its other applications include masks for the theatre, structures for carnival floats and even disposable fuel tanks for aircrafts! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Marine engineering: How to build a small sail boat
IETEducationIETEducation

Marine engineering: How to build a small sail boat

(0)
Discover marine engineering for kids and learn how to make a model of a sail boat out of craft sticks This marine engineering activity for kids will teach students how to make a model of a sailboat out of craft sticks. Students will learn facts about the United Kingdom’s rich history in the field of marine engineering. This includes building sailing ships like the HMS Victory, commanded by Admiral Nelson at the Battle of Trafalgar. Resources for teachers and activity sheets are provided to help students further their engineering abilities. Activity info, teachers’ notes and curriculum links In this activity learners use of the theme of significant turning points in British history, specifically their achievements in marine engineering, to make a model of a sail boat from craft sticks. They will then test their model to see if it floats. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Downloadable content How to build a small sail boat activity How to build a small sail boat presentation Tools/resources required PVA glue Glue spreader Craft sticks Highlighter pens or paints Material for the sail e.g. paper or card The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Create Chinese calligraphy
IETEducationIETEducation

Create Chinese calligraphy

(0)
Learning how to write using traditional Chinese handwriting. In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make use of Chinese calligraphy. They will learn about different types of ‘script’, what is meant by a Xuan, and how to write numbers using Chinese Regular script. There are five major script types used today in China: seal script, clerical script, cursive script, running script and standard script. Regular script means the proper script type of Chinese writing and is used by all Chinese for government documents and printed books. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Pencils Paintbrush Paint Pot of water to clean brush The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Design a car of the future
IETEducationIETEducation

Design a car of the future

(0)
Design investigations to test reaction times and ability to concentrate whilst driving In this activity students will design and carry out investigations to test reaction times and ability to concentrate. They will then try their test on older people and use their results to design a car of the future. Students will first be asked to discuss the opinion that road accidents are more likely to be caused by younger drivers. Make sure the students realise that this is an opinion and is not backed up with evidence. They could be asked how this opinion could be proved or disproved. Many different personal attributes can impact road safety, including a person’s vision, ability to concentrate, reaction times and mobility. The car of the future should be designed to help people overcome these issues. Students will carry out some tests in the classroom to give a reflection of how safe they would be as a driver. Students will work in groups of around 3-4 to plan and carry out their tests. They will gather data and state what it shows. Graphs can be drawn if there is time. For homework, students can repeat their experiment at home with older members of their family. In the following lesson, ask students to share their results with the rest of the group and discuss as a class what their results show. Are reaction times quicker in older or younger people? Which age group is less likely to get distracted? Tools/resources required Class access to computers with internet connection and headphones Paper/pens Rulers Projector Whiteboard The engineering context Understanding basic safety concepts is essential for engineers in the automotive industry. Suggested learning outcomes By the end of this activity students will be able to plan an investigation, deciding what measurements to take and what equipment to use, they will be able to choose how to present results and they will be able to use data to inform design. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Understanding ergonomics and anthropometrics
IETEducationIETEducation

Understanding ergonomics and anthropometrics

(0)
Measuring sizes of hands and presenting data Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use. This resource focuses on ergonomics in GCSE DT and the use of anthropometric data. Activity info, teachers’ notes and curriculum links An engaging KS4 activity in which students will collect data relating to the hand sizes of different people for use in designing a shopping bag carrier. It will build knowledge and understanding of how ergonomics and anthropometric data and anthropometric measurements are gathered for use in product design. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Linking to key exam boards such as GCSE DT providers AQA and Edexcel. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation